$(CH_2)_2OSO_2CH_3$ , 61439-60-9;  $n-C_4H_9NCO$ , 111-36-4; cyclohexanone, 108-94-1; ethylene oxide, 75-21-8; 1-[4-(oxiranylmethoxy)phenyl]ethanone, 19152-55-7; 4-vinylpyridine, 100-43-6; N-(chloroacetyl)piperidine, 1440-60-4; ethyl 4-[[[(2-amino-4fluorophenyl)amino]thioxomethyl]amino]-1-piperidinecarboxylate, 73733-85-4; ethyl 4-[[[[5-chloro-2-[[(4-fluorophenyl)methyl]amino]phenyl]amino]thioxomethyl]amino]-1-piperidinecarboxylate, 73733-86-5.

# New Antihistaminic N-Heterocyclic 4-Piperidinamines. 3. Synthesis and Antihistaminic Activity of N-(4-Piperidinyl)-3H-imidazo[4,5-b]pyridin-2-amines

Frans Janssens,\* Joseph Torremans, Marcel Janssen, Raymond A. Stokbroekx, Marcel Luyckx, and Paul A. J. Janssen

N. V. Janssen Pharmaceutica, Research Laboratories, B-2340 Beerse, Belgium. Received February 4, 1985

To study the bioisosteric replacement of a 2-pyridyl ring for a phenyl nucleus in astemizole, a series of N-(4piperidinyl)-3H-imidazo[4,5-b]pyridin-2-amines was synthesized and evaluated. The title compounds were obtained starting from either 8a or 8b by four synthetic methods. The in vivo antihistamine activity was evaluated by the compound 48/80-induced lethality test in rats and the histamine-induced lethality test in guinea pigs after oral and/or subcutaneous administration. Compound 37, the isostere of astemizole, showed the most potent antihistaminic properties in the rat. However, astemizole is superior to 37 as to duration of action and total potency.

Astemizole, a prototype of a new series of N-(4piperidinyl)-1*H*-benzimidazol-2-amines, is a potent, longlasting, and selective in vivo antihistamine, not affecting the central nervous system in different animal species, after both oral and subcutaneous administration.<sup>1-3</sup>



Replacement of a phenyl nucleus by a 2-pyridyl ring in the structure of various classical  $H_1$ -antagonists considerably enhances antihistaminic activity.<sup>4</sup> A series of N-(4-piperidinyl)-3H-imidazo[4,5-b]pyridin-2-amines (I) was synthesized in order to evaluate this well-known bioisosteric replacement<sup>5</sup> in astemizole and related compounds.

**Chemistry.** In the synthetic approach to the N-(4piperidinyl)-3H-imidazo[4,5-b]pyridin-2-amines, benzylamine 1 was allowed to react with 2-chloro-3-nitropyridine (2) to form 3a,b (Scheme I). Catalytic reduction of the nitro function of 3a,b quantitatively yielded 4a,b, which were immediately coupled with isothiocyanate  $5^1$  to yield 6a,b. Cyclodesulfurization of 6a,b with mercury oxide in tetrahydrofuran afforded 7a,b.<sup>1</sup> Deprotection with 48% HBr at reflux gave the intermediates 8a,b (Table I).

The test compounds 9–39 originated from 8a,b by one of the following four methods:<sup>1,2</sup> alkylation with LX in dimethylformamide at 70–90 °C (method A); addition of vinylpyridines in butanol (method B); reductive amination of ketones or aldehydes (method C); oxirane cleavage in a benzene-methanol mixture (method D).

## **Results and Discussion**

The in vivo, antihistamine activity was evaluated by the compound 48/80-induced lethality test in rats;<sup>6</sup> the results

(7) Awouters, F.; Niemegeers, C. J. E.; Janssen, P. A. J. Drug Dev. Res. 1981, 1, 107.

Part 1: Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R. A.; Luyckx, M.; Janssen, P. A. J. J. Med. Chem., first of three papers in this issue.

<sup>(2)</sup> Part 2: Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R. A.; Luyckx, M.; Janssen, P. A. J. J. Med. Chem., second of three papers in this issue.

<sup>(3)</sup> Van Wauwe, J.; Awouters, F.; Niemegeers, C. J. E.; Janssens, F.; Van Nueten, J. M.; Janssen, P. A. J. Arch. Int. Pharmacodyn. Ther. 1981, 251, 39.

<sup>(4)</sup> Casy, A. F. In "Handbook of Experimental Pharmacology"; Rocha, E., Silva, M., Eds.; Springer Verlag: New York, 1978.

<sup>(5)</sup> Thornber, C. N. Chem. Soc. Rev. 1979, 8, 563 and references cited therein.

<sup>(6)</sup> Niemegeers, C. J. E.; Awouters, F.; Van Nueten, J. M.; De Nollin, S.; Janssen, P. A. J. Arch. Int. Pharmacodyn. Ther. 1978, 234, 164.

Scheme  $I^a$ 



<sup>a</sup> Key: a, Z = H; b, Z = F.

are summarized in Table II (oral and subcutaneous administration). The duration of action for antihistamine activity of astemizole was compared with the isosteric compound 37 in the histamine-induced lethality test in guinea pigs<sup>3</sup> (Table III).

Maximal in vivo antihistamine activity after subcutaneous administration in the 48/80 lethality test in the rat is found for 35 and 39, followed by 9, 15, 24 and 29. Of these, only 24, 35, and 39 show moderate oral activity.

The alkyl- or alkenyl-substituted piperidines 9–14 exhibit good to excellent subcutaneous activity but again lack sufficient oral activity. Introduction of an aromatic group, linked to the piperidine nitrogen atom either via an alkyl, alkenyl, alkanoyl, or an alkoxy chain, results in excellent subcutaneous antihistamine activity (15–21, 25, 30–35, 37, 39). Oral effectiveness is good to moderate, except for 15, 25, 30, 31, 33, and 34. Fluoro substitution on the benzyl group does not significantly alter activity as illustrated by

the pairs 9-29 (L = Me), 15-30 (L =  $C_6H_5CH_2CH_2$ ), and 16-37 (L = 4-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>).

As could be expected from our previous results<sup>1,2</sup> the (4-methoxyphenyl)ethyl derivatives 16 and 37 (Z = H, F), and to a lesser extent 32 (a phenoxyethyl derivative) and 35 (a 2-pyridylethyl derivative), exhibit pronounced antihistamine activity after oral administration.

Compared with astemizole, several compounds are subcutaneously more active, but only 37, the isosteric imidazopyridinamine analogue, appears to be equipotent for oral activity, at least 2 h after administration (Table II). Judged by the histamine lethality test in guinea pigs, 37 and astemizole have an almost comparable duration of action, although that of 37 seems to be somewhat shorter based on the 48-h results (Table III).

In general, it can be concluded that substitution of an imidazo[4,5-b]pyridin-2-amine ring for a 2-aminobenzimidazole nucleus slightly reduces oral activity, with a few exceptions, while subcutaneous activity is enhanced, particularly in the benzyl series.<sup>1,2</sup>

#### **Experimental Section**

Chemistry. Melting points were determined with a Mettler FP<sub>1</sub> melting point apparatus and are uncorrected. Elemental analyses were performed by the analytical department of Janssen Pharmaceutica Laboratories. Mass spectra were measured with a Varian Matt 311-eV emission spectrometer. NMR spectra were measured with either a Brucker HX 60-12 or a Brucker WP 80-DS instrument (internal standard Me<sub>4</sub>Si). UV and IR spectra were determined with a Beckman DK-2A and a Perkin-Elmer 421 or 225 spectrometer. Analytical TLC was performed on silica 60  $F_{254}$  (Merck), and the spots were made visible by a UV lamp or iodine vapor.

**N-[(4-Fluorophenyl)methyl]-3-nitro-2-pyridinamine (3**b). A suspension of 4-fluorobenzylamine (9.7 g, 0.06 mol), 2-chloro-3-nitropyridine (9.4 g, 0.06 mol),<sup>8</sup> and sodium carbonate (10.6 g, 0.1 mol) in dimethylformamide (100 mL) was stirred for 1 h at 90 °C. The reaction mixture was cooled and poured into water. The solid product was collected and crystallized from 2-propanol to yield 3b: 10.5 g (71%); mp 74 °C. Anal.  $(C_{12}H_{10}FN_3O_2)$  C, H, N, F.

Ethyl 4-[[[2-[[(4-Fluorophenyl)methyl]amino]-3pyridinyl]amino]thioxomethyl]amino]-1-piperidinecarboxylate (6b). (i) A solution of 3b (10.5 g, 0.043 mol) in methanol (250 mL) was hydrogenated over RaNi (2 g) at atmospheric pressure and room temperature. After uptake of 3 equiv of hydrogen, the catalyst was filtered off and the filtrate was evaporated, affording  $N^2$ -[(4-fluorophenyl)methyl]-2,3pyridinamine (4b; 9.3g, 100%) (TLC 1 spot).

(ii) A solution of ethyl 4-isothiocyanato-1-piperidinecarboxylate (5) (9.2 g, 0.043 mol)<sup>1</sup> and 4b (9.3 g, 0.043 mol) in methanol (300 mL) was stirred and refluxed for 2 h. The solvent was evaporated in vacuo, and the residue was crystallized from 2-propanol to yield 6b: 10 g (54%); mp 166.5 °C. Anal. ( $C_{21}H_{26}FN_5O_2S$ ) C, H, N, S.

Ethyl 4-[[3-[(4-Fluorophenyl)methyl]-3H-imidazo[4,5b]pyridin-2-yl]amino]-1-piperidinecarboxylate (7b). A suspension of 6b (8.6 g, 0.02 mol), yellow mercury oxide (6.5 g, 0.03 mol), and a catalytic amount of sulfur in tetrahydrofuran (150 mL) was refluxed for 3 h. The solvent was evaporated, and the residue was crystallized from a mixture of 4 methyl-2-pentanone and diisopropyl ether to yield 7b: 7 g (88%); mp 134.4 °C. Anal. (C<sub>21</sub>H<sub>24</sub>FN<sub>5</sub>O<sub>2</sub>) C, H, N, F.

3-[(4-Fluorophenyl)methyl]-N-(4-piperidinyl)-3Himidazo[4,5-b]pyridin-2-amine Dihydrochloride Monohydrate (8b). A solution of 7b (40 g, 0.1 mol) in 48% hydrobromic acid solution (700 mL) was stirred and heated at 70 °C for 24 h. After evaporation of the solvent in vacuo, the residue was suspended in aqueous ammonia. The base was extracted with chloroform, dried (MgSO<sub>4</sub>), and evaporated. The crude base was

<sup>(8)</sup> Supplied by Aldrich.

Table I

|          |         |              |                                                                                                                   |                                             | •                  | crystn <sup>o</sup> |                           |
|----------|---------|--------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|---------------------|---------------------------|
| compd    | struct  | $\mathbf{Z}$ | form <b>u</b> la                                                                                                  | mp, °C                                      | yield <sup>a</sup> | solv                | anal.                     |
| 3a<br>3b | Z-CH2NH | H<br>F       | $\begin{array}{c} C_{12}H_{11}N_{3}O_{2}\\ C_{12}H_{10}FN_{3}O_{2} \end{array}$                                   | 75°<br>74                                   | 80<br>71           | A<br>A              | C, H, N<br>C, H, N, F     |
| 6a<br>6b |         | H<br>F       | $\begin{array}{c} C_{21}H_{27}N_{5}O_{2}S\\ C_{21}H_{26}FN_{5}O_{2}S \end{array}$                                 | 146.7<br>166.5                              | 70<br>54           | B<br>A              | C, H, N, S<br>C, H, N, S  |
| 7a<br>7b |         | H<br>F       | $\begin{array}{c} C_{21}H_{25}N_{5}O_{2}\\ C_{21}H_{24}FN_{5}O_{2} \end{array}$                                   | $\begin{array}{c} 148.6\\ 134.4\end{array}$ | 50<br>88           | A<br>B              | C, H, N<br>C, H, N, F     |
| 8a<br>8b |         | H<br>F       | $\begin{array}{l} C_{18}H_{21}N_{5}\cdot 2HCl\cdot H_{2}O\\ C_{18}H_{20}FN_{5}\cdot 2HCl\cdot H_{2}O \end{array}$ | 298.1<br>269.7                              | 14<br>67           | A<br>A              | C, H, N, Cl<br>C, H, N, F |

<sup>a</sup> Based on immediate precursor, after recrystallization. Generally no attempts made to optimize yields. <sup>b</sup> A = 2-propanol, B = 4-methyl-2-pentanone. <sup>c</sup> Mp 75  $^{\circ}C.^{10}$ 

treated with hydrogen chloride and crystallized from 2-propanol to afford 8b: 34.2 g (86%); mp 269.7 °C. Anal. ( $C_{18}H_{20}FN_5$ · 2HCl·H<sub>2</sub>O) C, H, N, F, H<sub>2</sub>O.

Method A. 3-[(4-Fluorophenyl)methyl]-N-[1-[2-(4-methoxyphenyl)ethyl]-4-piperidinyl]-3H-imidazo[4,5-b]pyridin-2-amine (37). A suspension of 4-methoxyphenyl ethanol-methanesulfonate ester<sup>1</sup> (2.3 g, 0.01 mol), 8b (3.25 g, 0.01 mol), and sodium carbonate (1.1 g, 0.01 mol) in dimethylformamide (100 mL) was stirred at 70 °C for 20 h. After cooling, the reaction mixture was poured into water and extracted twice with toluene. The combined organic layers were dried (MgSO<sub>4</sub>), filtered, and evaporated. Chromatographic purification (eluant chloroform-methanol, 98:2 (v/v)) and crystallization from a solvent mixture of acetone and diisopropyl ether yielded 37: 1.2 g (26%); mp 149.1 °C. Anal. (C<sub>27</sub>H<sub>30</sub>FN<sub>5</sub>O) C, H, N, F.

Method B. 3-[(4-Fluorophenyl)methyl]-N-[1-[2-(2-pyridinyl)ethyl]-4-piperidinyl]-3H-imidazo[4,5-b]pyridin-2-amine (35). A solution of 2-vinylpyridine (6.3 g, 0.06 mol) and 8b (10 g, 0.03 mol) in butanol (200 mL) was stirred and refluxed overnight. The solvent was evaporated in vacuo, and the residue was chromatographed on silica (eluant chloroform-methanol 97:3 (v/v)). The pure product was collected and crystallized from a mixture of acetone and diisopropyl ether to yield 35: 4.8 g (37%); mp 157.1 °C. Anal. (C<sub>25</sub>H<sub>27</sub>FN<sub>8</sub>) C, H, N, F. Method C. N-[1-(1-Methylethyl)-4-piperidinyl]-3-(phe-

Method C. N-[1-(1-Methylethyl)-4-piperidinyl]-3-(phenylmethyl)-3H-imidazo[4,5-b]pyridin-2-amine (10). A solution of acetone (10 mL), 8a·2HCl (3.8 g, 0.01 mol),<sup>9</sup> and sodium acetate (4 g, 0.05 mol) in methanol (100 mL) was hydrogenated over Pd/C 10% (2 g) at normal pressure and at 25 °C. The catalyst was filtered off after uptake of 1 equiv of hydrogen, and the filtrate was evaporated. The residue was treated with water, alkalized with sodium hydroxide, and extracted with chloroform. The combined organic layers were dried (MgSO<sub>4</sub>), filtered, and evaporated. Recrystallization from a mixture of methanol and diisopropyl ether afforded 10: 1.4 g (40%); mp 136.4 °C. Anal. (C<sub>21</sub>H<sub>27</sub>N<sub>5</sub>) C, H, N.

Method D.  $\alpha$ -(Phenoxymethyl)-4-[[3-(phenylmethyl)-3Himidazo[4,5-b]pyridin-2-yl]amino]-1-piperidineethanol (20). A suspension of (phenoxymethyl)oxirane (3 g, 0.02 mol)<sup>8</sup>, 8a·2HCl (3.8 g, 0.01 mol), and sodium carbonate (2.1 g, 0.02 mol) in benzene (150 mL) and methanol (50 mL) was stirred and refluxed overnight. The solvents were evaporated, and the residue was recrystallized from 2-propanol to yield 20: 1.6 g (35%); mp 136.6

#### °C. Anal. (C<sub>27</sub>H<sub>31</sub>N<sub>5</sub>O<sub>2</sub>) C, H, N.

Pharmacological Methods. The in vivo potency and duration were determined in rats and guinea pigs as described previously.<sup>36</sup> **Protection of rats from compound 48/80-induced lethality:** Compound 48/80, a mixture of oligomers obtained by condensation of 4-methoxy-N-methylbenzeneethanamine and formaldehyde has been described as a potent histamine-releasing agent in rats.<sup>7</sup> The protection from compound 48/80-induced lethal circulatory collapse appears to be a simple way of evaluating quantitatively the antihistaminic activity of test compounds. Male rats of an inbred Wistar strain, weighing 230-270 g, were used in the experiment. After overnight starvation the rats were transferred to conditioned laboratories (temperature  $21 \pm 1$  °C, relative humidity  $65 \pm 5\%$ ).

The rats were treated subcutaneously or orally with a test compound or with the solvent (NaCl solution, 0.9%). One hour after treatment there was injected intravenously compound 48/80, freshly dissolved in water, at a dose of 0.5 mg/kg (0.2 mL/100 g of body weight). In control experiments, wherein 250 solvent-treated animals were injected with the standard dose of compound 48/80, not more than 2.8% of the animals survived after 4 h. Survival after 4 h is therefore considered to be a safe criterion of a protective effect of drug administration. Calculated ED<sub>50</sub> values with confidence limits, according to Finney,<sup>11</sup> were obtained on the basis of test results on five animals for each of at least three doses from the geometrical series 0.0025, 0.005, 0.01, ..., 10.0, 20.0, and 40.0 mg/kg. Estimated ED<sub>50</sub> values, after oral (-2 h) and/or subcutaneous (-1 h) administration, were based on at least two animals per test dose.

Protection of Guinea Pigs from Histamine-Induced Lethality. The 50% protective dose  $(PD_{50})$  values against a lethal intravenous dose of histamine was determined by the following method: Male albino guinea pigs (280–360 g) were challenged with an intravenous injection of 1.25 mg/kg of histamine dihydrochloride. As all control animals died within 5 min, survival after 1 h was considered to be a safe criterion of protection from histamine-induced death. To study the duration of action, twofold increments of the test substance were administered orally 3, 24, 48, and 96 h prior to intravenous histamine challenge.

 $PD_{50}$  values with confidence limits were computed according to Finney.<sup>11</sup> Four to six guinea pigs per dose and time point were used for each of at least three doses from the geometrical series 0.0025, 0.005, 0.01, ..., 2.5, and 5.0 mg/kg. Estimated PD<sub>50</sub> values were based on at least two animals per test dose.

<sup>(9)</sup> Prepared analogously to 8b. For analytical results see Table I.

<sup>(10)</sup> Grube, H.; Suhr, H. Chem. Ber. 1969, 102, 1570.

Finney, D. J. "Probit Analysis"; University Press: Cambridge, 1962.

## Table II



|       |                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |     |            | vield.ª        | crystn      |        |                             |             | compd 4<br>test i<br>ED <sub>50</sub> , | 48/80 leth<br>n rats:°<br>mg/kg |
|-------|---------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----|------------|----------------|-------------|--------|-----------------------------|-------------|-----------------------------------------|---------------------------------|
| compd | L                                                                               |       | Z fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rmula                                | mp  | , °C       | %              | $solv^b$    | ł      | anal.                       | method      | -1 h sc                                 | -2 h oral                       |
| 9     | CH <sub>3</sub>                                                                 |       | H C <sub>19</sub> H <sub>23</sub> !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N <sub>5</sub>                       | 14  | 1.4        | 50             | E           | С, Н   | , N                         | С           | 0.08                                    | >2.5                            |
| 10    | $i-C_3H_7$                                                                      |       | $H C_{21}H_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>5</sub>                       | 13  | 6.4        | 40             | C-E         | C, H   | , N                         | C           | 0.63                                    | >2.5                            |
| 11    | $n - C_4 H_9$                                                                   |       | $H C_{22}H_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>5</sub>                       | 14  | 7.5<br>7.9 | 41             | C-E         | С, Н   | , N<br>N                    | A           | 0.16                                    | >2.5                            |
| 12    | <i>n</i> -C <sub>6</sub> <i>n</i> <sub>13</sub>                                 |       | $H C_{24}H_{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N5                                   | 10  | 01.0       | 00             | E           | С, н   | , 1N                        | A           | 0.16                                    | 2.5                             |
| 13    | $\frown$                                                                        |       | $H C_{24}H_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>5</sub>                       | 12  | 9.2        | 31             | С-Е         | С, Н   | , N                         | С           | 0.63                                    | >2.5                            |
| 14    | $CH_2 = CHCH_2$                                                                 |       | H C21H25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N <sub>5</sub>                       | 13  | 2.6        | 2 <del>9</del> | C-E         | С, Н   | , N                         | Α           | 0.31                                    | >2.5                            |
| 15    | $C_6H_5CH_2CH_2$                                                                |       | $H C_{26}H_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>5</sub>                       | 15  | 3.2        | 54             | A-E         | С, Н   | , N                         | A           | 0.08                                    | >2.5                            |
| 16    | $4-CH_3OC_6H_4-CH_2CH_2$                                                        |       | $H C_{27}H_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N5O                                  | 12  | 4.1        | 45             | Е           | С, Н   | , N                         | Α           | 0.16                                    | 0.31                            |
| 17    | $C_6H_5CH = CHCH_2$                                                             |       | H C27H29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N <sub>5</sub>                       | 12  | 4.6        | 52             | C-E         | С, Н   | , N                         | Α           | 1.25                                    | 1.25                            |
| 18    | $C_6H_5OCH_2CH_2$                                                               |       | H C26H29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N50                                  | 14  | 2.5        | 23             | C-E         | С, Н   | , N                         | Α           | 0.31                                    | 1.25                            |
| 19    | $4-FC_6H_4O(CH_2)_3$                                                            |       | $H C_{27}H_{30}H_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FN₅O                                 | 12  | 4.9        | 43             | C-E         | С, Н   | , N, F                      | A           | 1.25                                    | 1.25                            |
| 20    | $C_6H_5OCH_2CH(OH)C$                                                            | $H_2$ | $H C_{27}H_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_5O_2$                             | 13  | 6.6        | 35             | A           | С, Н   | , N                         | D           | 0.16                                    | 0.63                            |
| 21    | $4 - FC_6 H_4 C(O) (CH_2)_3$                                                    |       | $H C_{28}H_{30}H_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °N <sub>5</sub> O                    | 14  | 1.0        | 30             | C-E         | С, н   | , N, F                      | Α           | 0.31                                    | 1.25                            |
| 22    |                                                                                 |       | H $C_{36}H_{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>6</sub> O                     | 19  | 3.4        | 61             | C-E         | С, Н   | , N                         | Α           | >2.5                                    | nt                              |
|       |                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |     |            |                |             |        |                             |             |                                         |                                 |
| 23    | (C <sub>e</sub> H <sub>z</sub> ) <sub>o</sub> CHCH <sub>o</sub> CH <sub>o</sub> |       | H CaaHaal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N5                                   | 14  | 1.4        | 26             | C-E         | С. Н   | . N                         | С           | >2.5                                    | nt                              |
| 24    | 0                                                                               |       | н С. Н.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IN O                                 | 18  | 7.5        | 42             | D           | Сн     | N                           | Δ           | 0.08                                    | 1.25                            |
|       | <br>4-F-C <sub>6</sub> H <sub>4</sub> CNHCH <sub>2</sub> CH <sub>2</sub>        |       | 11 O 2711291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1180                                 | 10  | 1.0        | 12             | Ľ           | 0, 11  | ,                           |             | 0.00                                    | 1.20                            |
| 25    | $\wedge$                                                                        |       | H C <sub>27</sub> H <sub>20</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N5O2                                 | 18  | 4.7        | 18             | C-E         | С. Н   | N                           | Α           | 0.63                                    | >2.5                            |
|       |                                                                                 |       | 11 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |     |            |                |             |        |                             |             |                                         |                                 |
| 96    | 0                                                                               |       | исци                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                   | 00  | 17         | 46             | A           | сч     | N                           |             | 1.95                                    | 1.95                            |
| 20    | Ű,                                                                              |       | п С <sub>28</sub> П <sub>31</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170                                  | 22  | 1.7        | 40             | A-E         | С, п   | , IN                        | А           | 1.20                                    | 1.20                            |
| 97    |                                                                                 |       | иси                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 0.0 5 <b>U</b> 0                   | 15  | 9.9        | 94             | () <b>F</b> | сц     | N                           |             | 0.63                                    | 9.5                             |
| 21    | 0 NCH2CH2                                                                       |       | H C <sub>24</sub> H <sub>32</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N <sub>6</sub> U·0.3Π <sub>2</sub> U | 10  | 0.0        | 24             | С-Е         | С, п,  | , IN                        | А           | 0.65                                    | 2.0                             |
| 28    | Сн <sub>з</sub>                                                                 |       | H C <sub>28</sub> H <sub>32</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N <sub>6</sub> O                     | 17  | 6.8        | 47             | C-E         | С, Н   | N                           | Α           | >2.5                                    | nt                              |
|       | CH3                                                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |     |            |                |             |        |                             |             |                                         |                                 |
| 29    | $CH_3$                                                                          |       | F C <sub>19</sub> H <sub>22</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $FN_5$                               | 15  | 4.4        | 24             | Α           | С, Н   | , N, F                      | С           | 0.08                                    | >2.5                            |
| 30    | $C_6H_5CH_2CH_2$                                                                |       | F C <sub>26</sub> H <sub>26</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N_5$                                | 19  | 3.2        | 47             | Α           | С, Н   | , N, F                      | Α           | 0.31                                    | >2.5                            |
| 31    | $C_6H_5CH=CHCH_2$                                                               |       | $F C_{27}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_{28}H_$ | N <sub>5</sub>                       | 15  | 2.8        | 20             | E           | C, H   | , N                         | A           | 1.25                                    | >2.5                            |
| 32    | $C_6H_5OCH_2CH_2CH_2$                                                           |       | $F C_{27}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_{30}H_$ | N <sub>5</sub> O                     | 15  | 7.6        | 30             | D-E         | С, Н   | , N                         | A           | 0.31                                    | 0.31                            |
| 33    | S CH <sub>2</sub> CH <sub>2</sub>                                               |       | $F C_{24}H_{26}F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 'N₅S                                 | 17  | 6.2        | 30             | D-E         | С, Н,  | , N, F, S                   | A           | 0.16                                    | >2.5                            |
| 34    | 0                                                                               |       | F ConHonF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 'N <sub>o</sub> O                    | 14  | 3.4        | 26             | A-E         | C. H   | N. F                        | А           | 0.31                                    | >2.5                            |
|       |                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |     |            |                |             | 0, 11, | , _                         |             | 0101                                    | - 210                           |
| 35    | N_ CHSCHS                                                                       |       | F CarHarF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 'Ne                                  | 15  | 7.2        | 37             | D-E         | С. Н.  | N. F                        | в           | 0.04                                    | 0.31                            |
| 00    |                                                                                 |       | 1 02511271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 16                                 | 10  |            | 01             | 2 1         | 0, 11, |                             | D           | 0.01                                    | 0.01                            |
| 26    | 0                                                                               |       | F C.H.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 'N-0                                 | 201 | 94         | 46             | D           | СН     | NF                          | Δ           | 0.63                                    | 25                              |
| 00    | HN NICH <sub>2</sub> }3                                                         |       | 1 02811301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1170                                 | 20. | 2.1        | 10             | D           | 0, 11, |                             |             | 0.00                                    | <i>L</i> , O                    |
| 37    | 4-CH <sub>3</sub> OC <sub>6</sub> H₄-                                           | FC    | <sub>27</sub> H <sub>30</sub> FN <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 149.1                                | 26  | D-E        | С, Н,          | N, F        | A      | 0.31                        |             | 0.16                                    |                                 |
| 38    | $(4-FC-H_1)$                                                                    | FC    | HF.N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131 0                                | 18  | C-F        | сн             | N.F         | Α      | >2.5                        |             | nt                                      |                                 |
| 39    | $4-FC_6H_4C(O)(CH_2)_3$<br>astemizole                                           | F C   | ${}_{28}^{3411341^{\circ}31^{\circ}5}$<br>${}_{28}^{21}H_{29}F_2N_5O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161.5                                | 10  | C-E        | С, Н,<br>С, Н, | N, F        | Â      | 0.04<br>0.11 <sup>d</sup> ( | (0.08-0.16) | 1.25<br>0.11 <sup>d</sup> (             | 0.076-0.16)                     |

<sup>a</sup>Based on immediate precursor, after recrystallization. Generally no attempts made to optimize yields. <sup>b</sup>A = 2-propanol; B = 4methyl-2-pentanone; C = methanol; D = acetone; E = diisopropyl ether. <sup>c</sup>The estimated  $ED_{50}$  are used whenever possible. For inactive compounds the highest dose tested is indicated preceded by the symbol > (greater than). Compounds that are not tested are designated nt. <sup>d</sup>Confidence limits.

Table III. Protection from Intravenous Histamine Lethality in Guinea Pigs

|                  |                                | ED <sub>50</sub> , mg/kg:<br>hours after oral administrn |                                                               |                                                  |  |  |  |  |  |
|------------------|--------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| compd            | 3                              | 24                                                       | 48                                                            | 96                                               |  |  |  |  |  |
| 37<br>astemizole | 0.16<br>$0.33 (0.25-0.43)^{b}$ | 0.12<br>0.07 (0.05–0.09) <sup>b</sup>                    | $\begin{array}{c} 0.25 \\ 0.04 \ (0.03-0.07)^{b} \end{array}$ | nt <sup>a</sup><br>0.19 (0.10–0.35) <sup>b</sup> |  |  |  |  |  |

<sup>a</sup> Not tested = nt. <sup>b</sup> Confidence limits.

Acknowledgment. The authors thank the "Instituut tot aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw" for financial support. The authors thank Dr. R. Boar for helpful discussions and S. Daniels for typing the manuscript.

**Registry No.** 1a, 100-46-9; 2, 140-75-0; 3, 5470-18-8; 3a, 3723-70-4; 3b, 73733-74-1; 4a, 32282-07-8; 4b, 73733-75-2; 5, 73733-70-7; 6a, 73733-83-2; 6b, 75971-36-7; 7a, 73734-02-8; 7b, 73733-99-0; 8a, 76031-50-0; 8a·2HCl, 73734-21-1; 8b, 75979-00-9; 8b·2HCl, 73734-27-7; 9, 73735-95-2; 10, 73736-00-2; 11, 73735-17-8;

12, 73735-27-0; 13, 73735-99-6; 14, 73735-22-5; 15, 73735-12-3; 16, 75970-98-8; 17, 73735-25-8; 18, 73735-18-9; 19, 73755-86-9; 20, 75971-13-0; 21, 73735-26-9; 22, 98331-30-7; 23, 73735-19-0; 24, 73735-74-7; 25, 73735-21-4; 26, 98331-31-8; 27, 73735-24-7; 28, 98331-32-9; 29, 73735-94-1; 30, 73734-48-2; 31, 73734-78-8; 32, 73735-33-8; 37, 73735-68-9; 34, 73735-00-9; 35, 73735-72-5; 36, 73735-33-8; 37, 73755-88-1; 38, 98331-33-0; 39, 73755-85-8; 4-methoxyphenylethanol methanesulfonate (ester), 73735-86-1; 2-vinylpyridine, 100-69-6; acetone, 67-64-1; acetaldehyde, 75-07-0; cyclohexanecarboxaldehyde, 2043-61-0; butanaldehyde, 123-72-8; (phenoxymethyl)oxirane, 122-60-1.

Notes

## Racemic and Optically Active 1,3,3-Trimethyl-4-phenyl-4-(propionyloxy)piperidine

F. R. Ahmed,<sup>†</sup> G. F. Laws,<sup>‡</sup> A. E. Madani,<sup>§</sup> and A. F. Casy\*

School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K., and Division of Biological Sciences, National Research Council of Canada, Ottawa K1A 0R6, Canada. Received August 15, 1984

The preparation and resolution of 1,3,3-trimethyl-4-phenyl-4-(propionyloxy)piperidine (5, 3-methylprodine) are described, and the results of the antinociceptive activities of the products by hot-plate (mice) and tail-withdrawal (rats) tests are shown to support proposals made from a recent analysis of the stereochemical structure-activity relationships of C-methyl derivatives of the reversed ester of meperidine. Data of absolute configuration were obtained by X-ray crystallography of a hydrobromide salt.

The effect of alkyl substitution in the piperidine ring of 4-phenylpiperidine analgesics has attracted much interest ever since the 3-methyl analogues of the reversed ester of meperidine were described in the late 1940s.<sup>1</sup> Since that time many 3-alkyl and all possible mono- and nongeminal di-C-methyl derivatives of the reversed ester have been reported, and much data have accrued on potency variations among isomeric sets and their relative and absolute geometries. In a recent analysis of these results<sup>2</sup> a consistent stereochemical structure-activity pattern was developed on the basis of 4-phenylpiperidine ligands associating with the opiate receptor in the form of equatorial 4-phenyl chair conformations. Thus, the fact of the preferred placement of methyl  $\alpha$  and  $\beta$  to nitrogen in the Pro-4R and Pro-4S edges respectively of the unsubstituted reversed ester  $1^{3,4}$  is consistent with the absolute stereochemistry of the more active  $\gamma$ -2,5-dimethyl analogue (d- $\gamma$ -promedol (2))<sup>5</sup> and the inactivities of the  $\beta$ -2,3-dimethyl (either antipode must present one unfavorably positioned substituent) and cis-2,6- and cis-3,5-dimethyl analogues.<sup>6,7</sup> The same steric correlation obtains between the more active antipodal forms of  $\beta$ -prodine (3, R' = H) and  $\alpha$ promedol (3, R' = Me).<sup>3,8</sup> These and other results of



stereochemical analyses of C-methyl reversed esters of meperidine allow the absolute orientations of methyl

<sup>&</sup>lt;sup>†</sup>National Research Council of Canada.

<sup>&</sup>lt;sup>‡</sup>Visitor from Department of Pharmacy, University of Otago Medical School, Dunedin, New Zealand.

<sup>&</sup>lt;sup>§</sup>Visitor from College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

<sup>(1)</sup> Randall, L. O.; Lehman, G. J. Pharmacol. Exp. Ther. 1948, 93, 314.